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The usual expressions for the column elution chromatogram or its statistical 
moments have been derived using both discrete and coxtinuous models. Among the 
more extensive treatments of the latter are the efforts of Golay’, KubirP, Kucera3 
and J6nsson4. These works incorporate important non-equilibrium effects into the 
dynamic process. The ability to account for non-equilibrium effects has tremendous 
value in applying precise chromatographic techniques to the determination of phys- 
icochemical quantities5-s. 

In this article, we wish to discuss a boundary condition associated with the 
continuous model of chromatography on a column of finite length. This boundary 
condition influences the elution profile in an important but subtle way. We wish to 
demonstrate the effect through use of equilibrium linear chromatography, the effect 
being a change in the elution profile from what has been derived using the unbounded 
limit. We argue consequently that a more appropriate treatment of boundary con- 
ditions ought to be applied to the nonequilibrium case as well. 

THEORY 

The differential equation describing linear chromatography at equilibrium has 
a particularly simple form given by4 

DZ - u; = (1 + k’)$ 

or 

where c = c(z,t) represents the mobile phase concentration of solute at time t at posi- 
tion z along the column axis; u is the linear flow velocity of the mobile phase; D is 
an effective diffusion coefficient of the solute in the mobile phase; k’ is the capacity 
factor of the solute on the column; and D, and U, are D/( 1 + k’) and u/( 1 + k’), re- 
spectively. 

In order to solve the differential equation or to obtain the solution’s statistical 
moments, appropriate initial boundary conditions need to be invoked. Kucera3, for 
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example, uses c(z,t) = 0 as z -+ f cc and c(x,O) = 6(z) for an infinitely sharp sample 
injection pulse at the column origin at time zero. The elution chromatogram for a 
finite column length L is then taken as the concentration of solute at position z= L 
as a function of time. Kucera’s results for the first several moments are listed in the 
second column of Table I. These expressions have achieved a wide degree of accept- 
ance and are of immense practical importance. However, upon closer examination, 
it would appear that they are not as rigorously applicable as previously thought. 

TABLE I 

STATISTICAL MOMENTS OF THE EQUILIBRIUM ELUTION CHROMATOGRAM FOR A COL- 
UMN OF LENGTH L 

mk 12D:L’ I 216DjL I 960Dt 
6 

U, d U: 

m; 240D:L2 + 392OD:L i 174080: 

Uf 
9 

U, 
10 

U, 

+ 12OD,3L 12DzLz c 

u,6 U,7 

For heuristic purposes, we wish to consider extremely low mobile phase ve- 
locities under which circumstance longitudinal diffusion will undeniably be the dom- 
inating transport process. We in no way mean to imply that there is necessarily any 
operational significance to focussing attention at this extreme. It is in this framework, 
however, that the question at hand becomes clearest. 

At low velocities, one can picture the solute molecule as undergoing random, 
Brownian displacements in any direction in the mobile phase. This motion is super- 
imposed on the drift due to the mobile phase velocity. Viewing a “narrow window” 
at any position along the column, a given solute molecule, in principle, can make 
more than one pass into the window. This is particularly obvious in the limit of 
u = 0 when, on the average, half of the solute molecules move forward and half 
backward at any instant. The boundary condition invoked by Kucera3 and essentially 
all others as well corresponds to a solute detector that is placed at a particular coor- 
dinate L along the unbound column and that does not disturb the transport process. 
It is indeed what one would have for a passive detector, responding to solute con- 
centration at the detection coordinate L regardless of multiple traversals by solute 
in either direction in the endless column. Under these or equivalent conditions, the 
profile moments as given in Table I are correct. 
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On the other hand, should detection be more appropriately described as one 
which involves an actual termination of the chromatographic process, as with effluent 
collection or derivativization, then the usual (Kucera) boundary condition would be 
inappropriate. A mathematically more fundamental description of this point can be 
found in the discussion by Cox and Miller9 on Markov processes in the continuous 
state. In particular, the finite length column corresponds precisely to determination 
of what is called thefirst passage time in a Wiener diffusion process. The first passage 
time refers to initial arrival at downstream position L, having started at the upstream 
source. Subsequent crossings of the boundary do not alter the first passage result 
which is then equivalent to what would be obtained for a sink at L. 

Differential eqn. 1 is an example of an unrestricted Wiener process which be- 
longs to a more general set of diffusion equations called Kolmogorov or Fokker- 
Planck equationsg. Through the use of Laplace transforms, Cox and Miller9 obtain 
y(z,J, the moment generating function for first passage times to point z = L for a 
sample starting at z. (equal to zero in our case) and unrestricted in the upstream 
direction. 

Y(z~) = exp b. - Lo,wi 

where s is the time Laplace transform parameter and 

0,(s) = [-l& + (U,Z + 2SfJ~>“Z]/02 

and 

IS’ = 20, 

Calculation of time moments m, from the moment generating function y(zo) is quite 
straightforward9. The pertinent relationship is 

a(zo) = 1 + i ( -s)“m.(zo)/n! (3) 
n=O 

from which the various order moments in the first passage time can be calculated 
through operation on eqn. 3 by (- l)“d”/ds” and subsequent evaluation at s = 0. The 
results are listed in the third column of Table I. For orders greater than 1, the central 
moments, rnk = < (t-ml)“>, are used. 

DISCUSSION 

When elution chromatography on a column of finite length L is such that the 
various processes in effect on the column have ceased at position L, the column-end 
boundary condition usually invoked is inappropriate. The elution profile is correctly 
calculated by determining the time profile at which solute initially arrives at the 
detector or collector. The statistical moments for the finite system (z<L) are com- 
pared to those from the infinite system (z< co) in Table I for a linear system at 
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equilibrium. It is particularly noteworthy that the two sets of moments agree exactly 
in the limit of high velocity when longitudinal diffusion becomes less influential. One 
should also be aware that a recent discussion of short chromatographic columns by 
Underhill’O gave a result identical to the one derived here for ml, the mean residence 
time on a column, in which the detector “acted as a perfect sink for sorbate”. Un- 
derhill used a geometrical arguement to show also that the retention mean is inde- 
pendent of the degree to which equilibrium is attained. 

With the effect of finite column length derived here, there is no longer need to 
resort to neglecting higher order terms in D/u when discussing (i) chromatogram 
peak centroids and (ii) the otherwise exact relationship between the second statistical 
moment and height equivalent to a theoretical plate6*8. 

The effect of imposing the finite column length restraint will be further exam- 
ined for non-equilibrium scenarios in a future work. 
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